# Solution to Assignment 5, MMAT5520 

by YU, Rongfeng

## Exercise 6.2:

1(a). Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
-2 & \lambda-1
\end{array}\right|=0, \\
\lambda^{2}-2 \lambda-3=0 \\
\lambda=-1,3 .
\end{gathered}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=-1$ and $\lambda_{2}=3$ and the associated eigenvectors are

$$
\xi^{(1)}=\binom{1}{-1}, \quad \xi^{(2)}=\binom{1}{1},
$$

respectively. Therefore the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1} e^{-t}\binom{1}{-1}+c_{2} e^{3 t}\binom{1}{1} .
$$

1(c). Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-1 & 5 \\
-1 & \lambda+1
\end{array}\right|=0, \\
\lambda^{2}+4=0, \\
\lambda= \pm 2 i .
\end{gathered}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$ and the associated eigenvectors are

$$
\begin{aligned}
& \xi^{(1)}=\binom{1+2 i}{1}=\binom{1}{1}+\binom{2}{0} i \\
& \xi^{(2)}=\binom{1-2 i}{1}=\binom{1}{1}-\binom{2}{0} i
\end{aligned}
$$

respectively. Therefore

$$
\begin{aligned}
& x^{(1)}=\binom{1}{1} \cos 2 t-\binom{2}{0} \sin 2 t=\binom{\cos 2 t-2 \sin 2 t}{\cos 2 t} \\
& x^{(2)}=\binom{2}{0} \cos 2 t+\binom{1}{1} \sin 2 t=\binom{2 \cos 2 t+\sin 2 t}{\sin 2 t}
\end{aligned}
$$

are two linearly independent solutions and the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1}\binom{\cos 2 t-2 \sin 2 t}{\cos 2 t}+c_{2}\binom{2 \cos 2 t+\sin 2 t}{\sin 2 t}=\binom{\left(c_{1}+2 c_{2}\right) \cos 2 t+\left(c_{2}-2 c_{1}\right) \sin 2 t}{c_{1} \cos 2 t+c_{2} \sin 2 t}
$$

1(f). Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-4 & -1 & -1 \\
-1 & \lambda-4 & -1 \\
-1 & -1 & \lambda-4
\end{array}\right|=0 \\
(\lambda-3)^{2}(\lambda-6)=0 \\
\lambda=3,3,6
\end{gathered}
$$

For the repeated root $\lambda_{1}=\lambda_{2}=3$, there are two linearly independent eigenvectors

$$
\xi^{(1)}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad \xi^{(2)}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

For $\lambda_{3}=6$, the associated eigenvector is

$$
\xi^{(3)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Therefore the general solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=c_{1} e^{3 t}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+c_{2} e^{3 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c_{3} e^{6 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

2. Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-9 & -5 \\
6 & \lambda+2
\end{array}\right|=0 \\
\lambda^{2}-7 \lambda+12=0 \\
\lambda=3,4
\end{gathered}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=3$ and $\lambda_{2}=4$ and the associated eigenvectors are

$$
\xi^{(1)}=\binom{5}{-6}, \quad \xi^{(2)}=\binom{1}{-1}
$$

respectively. Therefore the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1} e^{3 t}\binom{5}{-6}+c_{2} e^{4 t}\binom{1}{-1}
$$

Since $x_{1}(0)=1, x_{2}(0)=0$, we have $c_{1}=-1, c_{2}=6$. So

$$
\binom{x_{1}}{x_{2}}=\binom{6 e^{4 t}-5 e^{3 t}}{-6 e^{4 t}+6 e^{3 t}}
$$

3(b). Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-1 & 1 \\
-5 & \lambda+1
\end{array}\right|=0, \\
\lambda^{2}+4=0, \\
\lambda= \pm 2 i .
\end{gathered}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$ and the associated eigenvectors are

$$
\begin{aligned}
& \xi^{(1)}=\binom{1}{1-2 i}=\binom{1}{1}+\binom{0}{-2} i \\
& \xi^{(2)}=\binom{1}{1+2 i}=\binom{1}{1}-\binom{0}{-2} i
\end{aligned}
$$

respectively. Therefore

$$
\begin{aligned}
& x^{(1)}=\binom{1}{1} \cos 2 t-\binom{0}{-2} \sin 2 t=\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t} \\
& x^{(2)}=\binom{0}{-2} \cos 2 t+\binom{1}{1} \sin 2 t=\binom{\sin 2 t}{-2 \cos 2 t+\sin 2 t}
\end{aligned}
$$

are two linearly independent solutions and the general solution is

$$
\mathbf{x}=c_{1}\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t}+c_{2}\binom{\sin 2 t}{-2 \cos 2 t+\sin 2 t} .
$$

3(d). Soution: Solving the characteristic equation

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-4 & 1 & 1 \\
-1 & \lambda-2 & 1 \\
-1 & 1 & \lambda-2
\end{array}\right|=0, \\
(\lambda-2)(\lambda-3)^{2}=0, \\
\lambda=2,3,3 .
\end{gathered}
$$

For $\lambda_{1}=2$, the associated eigenvector is

$$
\xi^{(1)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

For the repeated root $\lambda_{2}=\lambda_{3}=3$, there are two linearly independent eigenvectors

$$
\xi^{(2)}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \xi^{(3)}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{2} e^{3 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

## Exercise 6.3:

1(a).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
2 & \lambda+3
\end{array}\right|=0, \\
(\lambda+1)^{2}=0, \\
\lambda=-1 .
\end{gathered}
$$

$\lambda=-1$ is a double root and the eigenspace associated with $\lambda=-1$ is of dimension 1 and is spanned by $\binom{1}{-1}$. Thus

$$
x^{(1)}=e^{-t}\binom{1}{-1}
$$

is a solution. Next, we will find a generalized eigenvector of rank 2. Take $\eta=\binom{1}{0}$, then

$$
\begin{gathered}
\eta_{1}=(A+I) \eta=\binom{2}{-2} \neq \mathbf{0}, \\
\eta_{2}=(A+I)^{2} \eta=\mathbf{0} .
\end{gathered}
$$

Thus, $\eta$ is a generalized eigenvector of rank 2. Hence

$$
x^{(2)}=e^{-t}\left(\eta+t \eta_{1}\right)=e^{-t}\binom{1+2 t}{-2 t}
$$

is another solution to the system. Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{-t}\binom{1}{-1}+c_{2} e^{-t}\binom{1+2 t}{-2 t} .
$$

1(c).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-3 & 1 \\
-1 & \lambda-1
\end{array}\right|=0, \\
(\lambda-2)^{2}=0, \\
\lambda=2 .
\end{gathered}
$$

$\lambda=2$ is a double root and the eigenspace associated with $\lambda=2$ is of dimension 1 and is spanned by $\binom{1}{1}$. Thus

$$
x^{(1)}=e^{2 t}\binom{1}{1}
$$

is a solution. Next, we will find a generalized eigenvector of rank 2. Take $\eta=\binom{1}{0}$, then

$$
\eta_{1}=(A-2 I) \eta=\binom{1}{1} \neq \mathbf{0}
$$

$$
\eta_{2}=(A-2 I)^{2} \eta=\mathbf{0}
$$

Thus, $\eta$ is a generalized eigenvector of rank 2. Hence

$$
x^{(2)}=e^{2 t}\left(\eta+t \eta_{1}\right)=e^{2 t}\binom{1+t}{t}
$$

is another solution to the system. Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{2 t}\binom{1}{1}+c_{2} e^{2 t}\binom{1+t}{t}
$$

1(d). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda+3 & 0 & 4 \\
1 & \lambda+1 & 1 \\
-1 & 0 & \lambda-1
\end{array}\right|=0 \\
(\lambda+1)^{3}=0 \\
\lambda=-1 .
\end{gathered}
$$

Thus $A$ has an eigenvalue $\lambda=-1$ of multiplicity 3 . we find that the associated eigenspace is of dimension 1 and is spanned by $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. We need to find a generalized eigenvector of rank 3 . Let $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, then

$$
\begin{gathered}
\eta_{1}=(A+I) \eta=\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right) \neq \mathbf{0} \\
\eta_{2}=(A+I)^{2} \eta=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \neq \mathbf{0} \\
\eta_{3}=(A+I)^{3} \eta=\mathbf{0}
\end{gathered}
$$

Therefore, $\eta$ is a generalized eigenvector of rank 3. Hence

$$
\begin{gathered}
x^{(1)}=e^{-t} \eta_{2}=e^{-t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
x^{(2)}=e^{-t}\left(\eta_{1}+t \eta_{2}\right)=e^{-t}\left(\begin{array}{c}
-2 \\
-1+t \\
1
\end{array}\right) \\
x^{(3)}=e^{-t}\left(\eta+t \eta_{1}+\frac{t^{2}}{2} \eta_{2}\right)=e^{-t}\left(\begin{array}{c}
1-2 t \\
-t+\frac{t^{2}}{2} \\
t
\end{array}\right)
\end{gathered}
$$

form a fundamental set of solutions to the system.

Therefore the general solution is

$$
\mathbf{x}=e^{-t}\left(c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
-2 \\
-1+t \\
1
\end{array}\right)+c_{3}\left(\begin{array}{c}
1-2 t \\
-t+\frac{t^{2}}{2} \\
t
\end{array}\right)\right)
$$

1(f). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
2 & \lambda+2 & 3 \\
-2 & -3 & \lambda-4
\end{array}\right|=0 \\
(\lambda-1)^{3}=0 \\
\lambda=1
\end{gathered}
$$

Thus $A$ has an eigenvalue $\lambda=1$ of multiplicity 3 . we find that the associated eigenspace is of dimension 2 and is spanned by $\left(\begin{array}{c}3 \\ -2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)$. Thus

$$
x^{(1)}=e^{t}\left(\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right), \quad x^{(2)}=e^{t}\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)
$$

are two independent solutions. Next, We need to find a generalized eigenvector of rank 2. Let $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, then

$$
\begin{gathered}
\eta_{1}=(A-I) \eta=\left(\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right) \neq \mathbf{0} \\
\eta_{2}=(A-I)^{2} \eta=\mathbf{0}
\end{gathered}
$$

Therefore, $\eta$ is a generalized eigenvector of rank 2. Hence

$$
x^{(3)}=e^{t}\left(\eta+t \eta_{1}\right)=e^{t}\left(\begin{array}{c}
1 \\
-2 t \\
2 t
\end{array}\right)
$$

is another solution to the system.
Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{t}\left(\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}
1 \\
-2 t \\
2 t
\end{array}\right)
$$

## Exercise 6.4:

1(b).Soution: Solving the characteristic equation, we have

$$
\left|\begin{array}{cc}
\lambda-5 & 4 \\
-2 & \lambda+1
\end{array}\right|=0
$$

$$
\begin{gathered}
\lambda^{2}-4 \lambda+3=0 \\
\lambda=1,3
\end{gathered}
$$

For $\lambda_{1}=1$, the associated eigenvector is $\xi^{(1)}=\binom{1}{1}$.
For $\lambda_{2}=3$, the associated eigenvector is $\xi^{(2)}=\binom{2}{1}$.
Let $P=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$, and hence

$$
\begin{aligned}
e^{A t}=P e^{D t} P^{-1} & =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =-\left(\begin{array}{cc}
e^{t} & 2 e^{3 t} \\
e^{t} & e^{3 t}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 e^{3 t}-e^{t} & 2 e^{t}-2 e^{3 t} \\
e^{3 t}-e^{t} & 2 e^{t}-e^{3 t}
\end{array}\right) .
\end{aligned}
$$

1(d).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda & -2 \\
2 & \lambda
\end{array}\right|=0 \\
\lambda^{2}+4=0 \\
\lambda= \pm 2 i
\end{gathered}
$$

For $\lambda_{1}=2 i$, the associated eigenvector is $\xi^{(1)}=\binom{1}{i}$.
For $\lambda_{2}=-2 i$, the associated eigenvector is $\xi^{(2)}=\binom{i}{1}$.
Let $P=\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{cc}2 i & 0 \\ 0 & -2 i\end{array}\right)$, and hence

$$
\begin{aligned}
e^{A t}=P e^{D t} P^{-1} & =\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)\left(\begin{array}{cc}
e^{2 t i} & 0 \\
0 & e^{-2 t i}
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)^{-1} \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{2 t i} & i e^{-2 t i} \\
i e^{2 t i} & e^{-2 t i}
\end{array}\right)\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{2 t i}+e^{-2 t i} & -i e^{2 t i}+i e^{-2 t i} \\
i e^{2 t i}-i e^{-2 t i} & e^{2 t i}+e^{-2 t i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right) .
\end{aligned}
$$

1(e).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda & -3 \\
0 & \lambda
\end{array}\right|=0, \\
\lambda^{2}=0, \\
\lambda=0,0 .
\end{gathered}
$$

We see that $A$ has only one eigenvalue $\lambda=0$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\binom{1}{0}$. Thus $A$ is not diagonalizable. So we need to find a generalized eigenvector of rank 2 . Now we take $\eta=\binom{0}{1}$, and let

$$
\begin{gathered}
\eta_{1}=A \eta=\binom{3}{0} \\
\eta_{2}=A^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that $\eta$ is a generalized eigenvector of rank 2 , we may let

$$
Q=\left[\begin{array}{ll}
\eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$

then

$$
J=Q^{-1} A Q=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and hence

$$
\begin{aligned}
e^{A t} & =Q e^{J t} Q^{-1} \\
& =\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)^{-1} \\
& =\frac{1}{3}\left(\begin{array}{ll}
3 & 3 t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 3 t \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

1(g) Soution: $\quad e^{A t}=\left(\begin{array}{ccc}1 & t & \frac{t^{2}}{2} \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right)$.
2(c)Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda+1 & 2 & 2 \\
-1 & \lambda-2 & -1 \\
1 & 1 & \lambda
\end{array}\right|=0 \\
(\lambda-1)^{2}(\lambda+1)=0 \\
\lambda=1,1,-1
\end{gathered}
$$

For $\lambda_{1}=\lambda_{2}=1$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
For $\lambda_{3}=-1$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$.

Let $P=\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and hence

$$
\begin{aligned}
e^{A t}=P e^{D t} P^{-1} & =\left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)^{-1} \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
2 e^{-t} & e^{t} & e^{t} \\
-e^{-t} & 0 & -e^{t} \\
e^{-t} & e^{-t} & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & -1 & 1 \\
1 & 3 & 1
\end{array}\right) \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
-2 e^{-t} & -2 e^{-t}+2 e^{t} & -2 e^{-t}+2 e^{t} \\
e^{-t}-e^{t} & e^{-t}-3 e^{t} & e^{-t}-e^{t} \\
-e^{-t}+e^{t} & -e^{-t}+e^{t} & -e^{-t}-e^{t}
\end{array}\right) .
\end{aligned}
$$

Therefore the solution to the initial problem is

$$
\begin{aligned}
\mathbf{x}=e^{A t} \mathbf{x}_{0} & \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
-2 e^{-t} & -2 e^{-t}+2 e^{t} & -2 e^{-t}+2 e^{t} \\
e^{-t}-e^{t} & e^{-t}-3 e^{t} & e^{-t}-e^{t} \\
-e^{-t}+e^{t} & -e^{-t}+e^{t} & -e^{-t}-e^{t}
\end{array}\right)\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{c}
e^{t}+2 e^{-t} \\
e^{t}-e^{-t} \\
-2 e^{t}+e^{-t}
\end{array}\right) .
\end{aligned}
$$

## Exercise 6.5:

1(c)Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-5 & 1 & -1 \\
-1 & \lambda-3 & 0 \\
3 & -2 & \lambda-1
\end{array}\right|=0, \\
(\lambda-3)^{3}=0 \\
\lambda=3 .
\end{gathered}
$$

We see that $A$ has only one eigenvalue $\lambda=3$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Thus $A$ is not diagonalizable. So we need to find a generalized eigenvector of rank 3 . Now we take $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(A-3 I) \eta=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right) \\
\eta_{2}=(A-3 I)^{2} \eta=\left(\begin{array}{c}
0 \\
2 \\
2
\end{array}\right) \\
\eta_{3}=(A-3 I)^{3} \eta=\mathbf{0} .
\end{gathered}
$$

We see that $\eta$ is a generalized eigenvector of rank 3 , we may let

$$
Q=\left[\begin{array}{lll}
\eta_{2} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right)
$$

then

$$
J=Q^{-1} A Q=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

and hence

$$
\begin{aligned}
e^{A t} & =Q e^{J t} Q^{-1} \\
& =\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right) \cdot e^{3 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right)^{-1} \\
& =e^{3 t}\left(\begin{array}{ccc}
1+2 t & -t & t \\
t+t^{2} & 1-\frac{t^{2}}{2} & \frac{t^{2}}{2} \\
-3 t+t^{2} & 2 t-\frac{t^{2}}{2} & 1-2 t+\frac{t^{2}}{2}
\end{array}\right)
\end{aligned}
$$

1(d)Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda+2 & 9 & 0 \\
-1 & \lambda-4 & 0 \\
-1 & -3 & \lambda-1
\end{array}\right|=0 \\
(\lambda-1)^{3}=0 \\
\lambda=1
\end{gathered}
$$

We see that $A$ has only one eigenvalue $\lambda=3$, but the associated eigenspace is of dimension 2 , which is spanned by $\xi^{(1)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$. Thus $A$ is not diagonalizable. So we need to find a generalized eigenvector of rank 2. Now we take $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(A-I) \eta=\left(\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right) \\
\eta_{2}=(A-I)^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that $\eta$ is a generalized eigenvector of rank 3, we may let

$$
Q=\left[\begin{array}{lll}
\xi^{(1)} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

then

$$
J=Q^{-1} A Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and hence

$$
\begin{aligned}
e^{A t} & =Q e^{J t} Q^{-1} \\
& =\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \cdot e^{t}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)^{-1} \\
& =e^{t}\left(\begin{array}{ccc}
1-3 t & -9 t & 0 \\
t & 1+3 t & 0 \\
t & 3 t & 1
\end{array}\right) .
\end{aligned}
$$

## Exercise 6.6:

1(a).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-3 & 2 \\
-2 & \lambda+2
\end{array}\right|=0 \\
\lambda^{2}-\lambda-2=0 \\
\lambda=-1,2
\end{gathered}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\binom{1}{2}$.
For $\lambda_{2}=2$, the associated eigenvector is $\xi^{(2)}=\binom{2}{1}$.
Let $P=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$.
Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\Psi(t)=P e^{D t} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-t} & 2 e^{2 t} \\
2 e^{-t} & e^{2 t}
\end{array}\right)
\end{aligned}
$$

1(c).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-2 & 5 \\
-1 & \lambda+2
\end{array}\right|=0 \\
\lambda^{2}+1=0 \\
\lambda= \pm i
\end{gathered}
$$

For $\lambda_{1}=i$, the associated eigenvector is $\xi^{(1)}=\binom{i+2}{1}$.
For $\lambda_{2}=-i$, the associated eigenvector is $\xi^{(2)}=\binom{2-i}{1}$.

Let $P=\left(\begin{array}{cc}i+2 & 2-i \\ 1 & 1\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, and hence

$$
\begin{aligned}
e^{A t}=P e^{D t} P^{-1} & =\left(\begin{array}{cc}
i+2 & 2-i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t i} & 0 \\
0 & e^{-t i}
\end{array}\right)\left(\begin{array}{cc}
i+2 & 2-i \\
1 & 1
\end{array}\right)^{-1} \\
& =\frac{1}{2 i}\left(\begin{array}{cc}
(i+2) e^{t i} & (2-i) e^{-t i} \\
e^{t i} & e^{-t i}
\end{array}\right)\left(\begin{array}{cc}
1 & i-2 \\
-1 & i+2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos t+2 \sin t & -5 \sin t \\
\sin t & \cos t-2 \sin t
\end{array}\right)
\end{aligned}
$$

which is a fundamental matrix for the system.
1(g).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
-2 & \lambda-1 & 1 \\
8 & 5 & \lambda+3
\end{array}\right|=0, \\
(\lambda+1)(\lambda+2)(\lambda-2)=0, \\
\lambda=-1,-2,2 .
\end{gathered}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$.
For $\lambda_{2}=-2$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}-4 \\ 5 \\ 7\end{array}\right)$.
For $\lambda_{3}=2$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
Let

$$
Q=\left(\begin{array}{ccc}
-3 & -4 & 0 \\
4 & 5 & 1 \\
2 & 7 & -1
\end{array}\right)
$$

then

$$
D=Q^{-1} A Q=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right),
$$

Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\Psi(t)=Q e^{D t} & =\left(\begin{array}{ccc}
-3 & -4 & 0 \\
4 & 5 & 1 \\
2 & 7 & -1
\end{array}\right)\left(\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-3 e^{-t} & -4 e^{-2 t} & 0 \\
4 e^{-t} & 5 e^{-2 t} & e^{2 t} \\
2 e^{-t} & 7 e^{-2 t} & -e^{2 t}
\end{array}\right) .
\end{aligned}
$$

1(j)Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-3 & -1 & -3 \\
-2 & \lambda-2 & -2 \\
1 & 0 & \lambda-1
\end{array}\right|=0, \\
(\lambda-2)^{3}=0, \\
\lambda=2 .
\end{gathered}
$$

We see that $A$ has only one eigenvalue $\lambda=2$, but the associated eigenspace is of dimension 1, which is spanned by $\xi=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$. Thus $A$ is not diagonalizable. So we need to find a generalized eigenvector of rank 3 . Now we take $\eta=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(A-2 I) \eta=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \\
\eta_{2}=(A-2 I)^{2} \eta=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
\eta_{3}=(A-2 I)^{3} \eta=\mathbf{0} .
\end{gathered}
$$

We see that $\eta$ is a generalized eigenvector of rank 3 , we may let

$$
Q=\left[\begin{array}{lll}
\eta_{2} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right),
$$

then

$$
J=Q^{-1} A Q=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\Psi(t)=Q e^{J t} & =\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right) \cdot e^{2 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right) \\
& =e^{2 t}\left(\begin{array}{ccc}
1 & 2+t & \frac{t^{2}}{2}+2 t+1 \\
2 & 2+2 t & t^{2}+2 t+1 \\
-1 & -1-t & -\frac{t^{2}}{2}-t
\end{array}\right)
\end{aligned}
$$

2(c)Soution: Solving the characteristic equation, we have

$$
\left|\begin{array}{ccc}
\lambda-3 & 0 & 0 \\
4 & \lambda-7 & 4 \\
2 & -2 & \lambda-1
\end{array}\right|=0
$$

$$
\begin{gathered}
(\lambda-3)^{2}(\lambda-5)=0, \\
\lambda=3,3,5 .
\end{gathered}
$$

For $\lambda_{1}=\lambda_{2}=3$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. For $\lambda_{3}=5$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$.
Let $P=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & -1 & 1\end{array}\right)$, then we have $D=P^{-1} A P=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$, and hence

$$
\begin{aligned}
e^{A t}=P e^{D t} P^{-1} & =\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
0 & e^{3 t} & 0 \\
0 & 0 & e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -2 \\
-1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{3 t} & e^{3 t} & 0 \\
e^{3 t} & 0 & 2 e^{5 t} \\
0 & -e^{3 t} & e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -2 \\
-1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
2 e^{3 t}-2 e^{5 t} & -e^{3 t}+2 e^{5 t} & 2 e^{3 t}-2 e^{5 t} \\
e^{3 t}-e^{5 t} & -e^{3 t}+e^{5 t} & 2 e^{3 t}-e^{5 t}
\end{array}\right) .
\end{aligned}
$$

Therefore the required fundamental matrix with initial condition is

$$
\begin{aligned}
\Phi(t)=e^{A t} \Phi_{0} & \\
& =\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
2 e^{3 t}-2 e^{5 t} & -e^{3 t}+2 e^{5 t} & 2 e^{3 t}-2 e^{5 t} \\
e^{3 t}-e^{5 t} & -e^{3 t}+e^{5 t} & 2 e^{3 t}-e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & -3 & 1 \\
-1 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 e^{3 t} & 0 & -e^{3 t} \\
2 e^{3 t}-2 e^{5 t} & 5 e^{3 t}-8 e^{5 t} & -3 e^{3 t}+4 e^{5 t} \\
-e^{5 t} & 5 e^{3 t}-4 e^{5 t} & -2 e^{3 t}+2 e^{5 t}
\end{array}\right) .
\end{aligned}
$$

